Supporting renewables in a redesigned power market:

What should change, what should stay?

Fabio Genoese

Power market decarbonisation post-2020: what roles for the EU ETS and for complementary instruments?

Brussels, 17 September 2015
Key messages

- Policy costs for renewables can be reduced by adapting market rules to renewables and by more efficient support systems.

- Dedicated support likely needed to reach 2030 targets unless following trends are revised:
 - Declining trend in market value of renewables (low ETS price, low coal price, suboptimal technology mix)
 - Wholesale prices signal no need for new capacity (any type)

- Demand-response can substantially policy costs for renewables (especially for wind power), but cannot fully reverse the declining trend in market value
Outline

- Redesigned power market
- Supporting renewables
- The role of demand-response
• CEPS Task Force Report (27 July 2015)
 – goo.gl/NW9nXV
 – Members: industry, research, NGOs,…

• Consensus:
 – Properly implement current framework
 – Strengthen ETS
 – Facilitate participation of renewables and demand-side in current markets

• No consensus:
 – Explicit remuneration of availability, long-term contracts
Consensual recommendations and impact on renewables

<table>
<thead>
<tr>
<th>Implement properly</th>
<th>Strengthen ETS</th>
<th>Facilitate participation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Couple intraday & balancing markets</td>
<td>- Long-term scarcity signal for carbon allowances needed (no agreement among TF members on how to strengthen ETS)</td>
<td>- Balancing markets: shorter commitment period, separate auctions for negative/positive balancing power</td>
</tr>
<tr>
<td>- Standardise products, harmonise gate-closure, relax price caps,…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expected impact on renewables

- **Liquidity ↑, cross-border competition ↑**
 - balancing costs ↓, net support costs ↓
- **Market value of renewables ↑**
 - net support costs ↓
- **Liquidity ↑, cross-resource competition ↑, must-run ↓**
 - net support costs ↓ *(revenues ↑, balancing costs ↓)*
Supporting renewables
What has worked, what hasn’t?

Support has been effective

- Installed capacity 2004-13 (EU-28):
 - Wind: +84 GW (+244%)
 - Solar: +78 GW (+6,000%)

- Feed-in tariffs for solar (DE):
 - ≤ 570 €/MWh (2004)
 - ≤ 130 €/MWh (2014)

but could have been more efficient

- Design flaws:
 - High share of levies in electricity bills
 - Overcompensation
 - No volume control
 - (..)
- Same effect at lower costs would have been possible
Supporting renewables
What should change?

- Main principles laid down in “Guidelines on State aid for environmental protection and energy 2014-2020” (EEAG)

Direct commercialisation
- Renewable generators selling directly on the market

Same responsibilities
- Balancing responsibility (e.g. for forecast errors)

Level of support
- Competitive bidding process (e.g. auctions) to set level of support

Expected impact
- No 3rd party taking volume risk anymore
 - *de-facto* end of priority dispatch
- Improved forecast quality, more liquid intraday markets
 - *de-facto* more efficient support
- Reduced risk of over- & undercompensation
- Volume control
Supporting renewables
What should stay?

- Dedicated support likely needed beyond 2020 to reach targets
 - Gap between wholesale market price and technology costs
 - Underlying challenge: currently no need for new capacity

Feed-in tariff: 91 €/MWh (solar, Dec ‘14)
Gap filled by dedicated support, no market-driven deployment

<table>
<thead>
<tr>
<th>Year</th>
<th>Base price</th>
<th>Market value wind</th>
<th>Market value solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>65.7</td>
<td>59.6</td>
<td>82.2</td>
</tr>
<tr>
<td>2009</td>
<td>38.8</td>
<td>35.4</td>
<td>44.1</td>
</tr>
<tr>
<td>2010</td>
<td>44.5</td>
<td>42.0</td>
<td>49.7</td>
</tr>
<tr>
<td>2011</td>
<td>51.1</td>
<td>47.1</td>
<td>56.0</td>
</tr>
<tr>
<td>2012</td>
<td>42.6</td>
<td>37.3</td>
<td>44.2</td>
</tr>
<tr>
<td>2013</td>
<td>37.8</td>
<td>32.2</td>
<td>36.9</td>
</tr>
<tr>
<td>2014</td>
<td>32.8</td>
<td>28.0</td>
<td>32.1</td>
</tr>
</tbody>
</table>
The role of demand-response

- Basic idea: increase demand in times of low prices / high penetration of renewables ⇔ price ↑ ⇔ market value ↑
- Ex-post analysis of German market in 2014:
 - Market value increases by 7.3 €/MWh (+22%) with 10 GW of demand-response @ 30 €/MWh
Can lead to substantial savings in net support costs

- Increased market value = reduced net support costs for renewables
- Savings mostly affecting wind, up to €319 millions (≈ 9% of net support costs for wind in DE-2014)
Key messages

• Policy costs for renewables can be reduced by adapting market rules to renewables and by more efficient support systems.

• Dedicated support likely needed to reach 2030 targets unless following trends are revised:
 – Declining trend in market value of renewables (low ETS price, low coal price, suboptimal technology mix)
 – Wholesale prices signal no need for new capacity (any type)

• Demand-response can substantially policy costs for renewables (especially for wind power), but cannot fully reverse the declining trend in market value
Thank you for your attention

Dr Fabio Genoese
Research Fellow

E: fabio.genoese@ceps.eu
M: +32 489 912515
T: +32 2 229 3948
Backup
Impact on ETS is limited unless renewables target is overachieved

No indication for overachieving RES-E targets!
Cost decrease has been in line with expectations for emerging technologies, e.g. solar

Source: IRENA 2012